Journal of Engineering Physics and Thermophysics, Vol. 73, No. 4, 2000

MOTION OF A CURVILINEAR NET ON NORMAL
LOCALIZED IMPACT

A. S. Kovenya® and M. D. Martynenko® UDC 624.074.4.042.8

Within the framework of a continuous computational model, the authors obtained equations of motion
for a curvilinear netted structure that in the initial state has the shape of a spherical netted dome. The
motion of the net in the case of loading of one node by a normal localized impact is considered.

In [1-3], an investigation of the motion of a plane net consisting of two systems of extensible threads
that in the initial state of rest formed a square net in a plane was conducted. In the present work we consider
a curvilinear netted structure formed by two systems of orthogonal threads that in the initial state form a
spherical netted dome. Following [1-4], we use a so-called continuous computational model that involves three
groups of equations: equations of motion, geometric relationships between deformations and displacements, and
relations of elasticity, in other words, equations of state of the computational model (Fig. 1).

For this, we introduce a curvilinear coordinate system of mixed type: Lagrange coordinates S; and $>
and Cartesian coordinates Xj, X», and X3 (global coordinates), and we consider a certain small element of the
net that is a curvilinear rectangle with sides ds; and ds; and is oriented along the lines S| and S;. This leads
to the following equations of motion of the net element:
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where u; are the displacements of the net particles; B} and sz are, respectively, the angles of rotation of the
sides ds; and ds, relative to the axes of the Cartesian coordinates.
The differential relations for the deformation components can be represented as follows:
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To describe displacements in the global system X, X5, and X3, we use the angles of rotation Bj and
[3] of the sides ds; and ds;, respectively, relative to the axes of the Cartesian coordinates, adding to them the
angles BJ of rotation of the normal @ relative to the X, X, and X3 axes. Here the following correspondences
can be established:
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To simplify the representation, we adopt the notation
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Fig. 1. Computational scheme for describing the stressed-deformed state
of an element of a curvilinear net.

l;=cos B’i; m; = cos Bé; n; = cos B;. &)

Thus, the investigation of the net motion is reduced to solution of the following system of differential
equations:
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where a = 1/R(3y; sin @y +dy,); b = 8; cot /R (i = E); Si is the Kronecker symbol.
Differentiating Eq. (7) with respect to ¢, and ¢, and neglecting terms of second order of smallness, we
obtain
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where ¢ = &; cos ¢;/R.
For each of the two conditional families of threads the following relations also hold:
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Hence, using Eq. (10), we have
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Next, it must be taken into account [5, 6] that
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Using expressions (10)-(13), we transform Eqs. (6)-(9) to the form
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Fig. 2. Fragment of the netted region on exposure of the upper node of a
dome to a normal localized impact.
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Next, we consider a curvilinear netted structure in the shape of a spherical netted dome with a rise f =
R, fastened on a rigid supporting contour in the form of a ring of radius R. We assume that the rods that make
up the dome are manufactured from a linearly elastic material; in this case the equations of motion of the net
(14) can be written in the following form (1o be specific, below we give only one equation of system (14)):
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TABLE 1. Change in the State Parameters of the Node A(l_7:)’ 0) with Time (the impact velocity is 50 m/sec; u; = 0)

1, sec Uy, M u3, m
6.0-107 3.5.10712 -1.3-1078
9.0-107 2.2-1071 -9.4-1078
1210 751071 -3.81077
15107 1.8-10710 -1.2.107°
1.8-107* 3.0-10710 281076
27107 —-6.0-10710 21107
3.0107 26107 -3.6:107°
3.6:107% -1.5.1078 -8.8-1075
3.9-107% 281078 -1.3-10%
48107 -1.3-1077 -3.7-107%
6.0-107* -5.8.1077 -1.1-1073
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The mixed problem obtained was solved numerically in the region (Fig. 2)
D={0$q>ls%; os%sg; OStST}.

Here, as the initial conditions, we selected ones that simulate impact against the upper node of the netted dome
fastened on the rigid circular supporting contour:
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In particular, conditions (15) mean the following: at the instant of the action of a certain pulse load on
the net, the point with the coordinate ¢, = 0 acquires some instantaneous velocity V; in addition, it was as-
sumed that the propagation velocity of perturbations is independent of the direction in the global coordinate
system X, X, and Xs.

To solve the problem, we used a three-layer difference scheme. An analysis of the calculation results
allows us to obtain the scheme of deformation of the netted structure over a certain fixed time interval. We
present results of calculations for a net node located near the dome vertex (see Table 1).

In conclusion it should be noted that the method used makes it possible to evaluate the strength prop-
erties of a netted structure in a wide range of dynamic loads.

NOTATION

R, radius of curvature; r, radius of the parallel circle; N, linear force; p, specific surface density of the
net; €, relative deformation; F, specific surface load on the net; E, Young’s modulus; B, direction angle; 1, m,
and n, cosines of the direction angles; V, velocity of motion of the net node; u, v, w, displacements in the local
coordinate system,; ¢, time.
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